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Chapter 1

Introduction

WPPis a computer program for simulating seismic wave propagatin parallel machined¥PPsolves the
governing equations in second order formulation using arwaked finite difference approach. The basic
numerical method is described i [AIVPPimplements substantial capabilities for 3-D seismic miodgl
with a free surface condition on the top boundary, non-réfigdar-field boundary conditions on the other
boundaries, point force and point moment tensor sourcestevith many predefined time dependencies,
fully 3-D heterogeneous material model specification, ougd synthetic seismograms in tISAC[4] for-
mat, output oflGMT [[L1]] scripts for laying out simulation information on a mamd output of 2-D slices of
(derived quantites of) the solution field as well as the niatenodel.

Version 2.0 ofWPPallows the free surface boundary condition to be imposed cureed topography.
For this purpose a curvilinear mesh is used near the frearextending into the computational domain
down to a user specified level. The elastic wave equationstandree surface boundary conditions are
discretized on the curvilinear mesh using the energy ceimsgitechnique described inl[2]. A curvilinear
mesh generator is built intd/PPand the curvilinear mesh is automatically generated froentdpography.
Below the curvilinear grid, the elastic wave equation isditized on Cartesian meshes, which leads to a
more computationally efficient algorithm.

In version 2.0 ofWPP, Cartesian local mesh refinement can be used to make the tatiopal mesh
finer near the free surface, where more resolution often elee to resolve short wave lenghts in the
solution, for example in sedimentary basins. The mesh mefems is performed in the vertical direction and
each Cartesian grid is constructed from user specified raéné levels. In this approach, the grid size in
all three spatial directions is doubled across each mesteragnt interface, leading to substantial savings
in memory and computational effort. The energy conservimggmrefinement coupling method described
in [10] is used to handle the hanging nodes along the refinemtemface.

Theexamples subdirectory of thaVPPsource distribution contains several examples and vididat
tests. Many Matlab/octave scripts are provided inttws directory.

Acknowledgments Many people have contributed to the developmenw&fPand we would like to thank
(in no particular order) Artie Rodgers, Heinz-Otto KreiStefan Nilsson, Kathleen McCandeless, Hrvoje
Tkalcic, Steve Blair, Daniel Appeld, and Caroline Bono.isTwork was enabled by financial support from
a Laboratory Directed Research and Development (LDRD)ptajt Lawrence Livermore National Labo-
ratory, as well as support from the OASCR program at the Ofifcecience at the Department of Energy.



Chapter 2

Getting started

2.1 Running WPP

WPPcan be run from the UNIX prompt or from a script. NormallyPP uses one argument: the name
of the input file. The input file is an ASCII text file which coima a number of commands specifying the
properties of the simulation, such as the dimensions ofdngpuitational domain, grid spacing, the duration
of the simulation, the material properties, the source maae well as the desired output. To improve
readability of this document we have used the continuatltaraxcter X” to extend long commands to the
subsequent line. There is however no support for contionatharacters iWWPP, so each command must
be given on one (sometimes long) line in the input file.

SinceWPPis a parallel code, it is required to be run under a parall@rating environment such as
mpiexec, mpirun, or srun. For example,

shell> mpiexec -np 2 wpp test.in

tells WPPto read input from a file namegst.in . Throughout this document we use the convention that
input files have the file suffixn , butWPPreads files with any extension.

Running on the Livermore Computing parallel linux clusters The srun command is currently used to
run parallel jobs on LC machines. For example,

shell> srun -ppdebug -n 32 wpp xxx.in

runs wpp on 32 processors on the debug parition using xxsitha input file. Note that the pdebug
partition is intended for shorter jobs and is subject to tBPU time limit and a limit on the number of
processors per job. Jobs requiring more computer resoumcss be submitted through the batch system,
currently using the msub command. Refer to the Livermore @uting web pages for detailed information
(https://computing.linl.gov).

Running on other platforms (Linux desktop/laptop): Depending on the MPI library, you may have to
start an mpd daemon before starting your first parallel j@e (®pich2-doc-user.pdf for more info). After
that, wpp can be started using the mpirun command. For exampl

shell> mpirun -np 2 wpp wpp.in

runs the wpp code on two processors, usimp.in  as the input file.



version information (-v) Version information for th&VPPexecutable can be obtained throughflag:

tux230.lInl.gov{andersp}186: wpp -v

WPP Version 2.0
Copyright (C) 2007-2010 Lawrence Livermore National Secur ity, LLC.

WPP comes with ABSOLUTELY NO WARRANTY:; released under GPL.
This is free software, and you are welcome to redistribute
it under certain conditions, see LICENSE.txt for more detai Is

Compiled: Mon Dec 21 10:54:44 2009

By: andersp

Machine: tux230.linl.gov

Compiler: /usr/casc/wpp/tools/tux227/bin/mpicxx

3rd party software base directory: /usr/casc/wpp/tools/t ux227

Note that the same information is by default printed to séadaut at the beginning of every run.



Chapter 3

Coordinate system, units and the grid

WPP uses a right-handed Cartesian coordinate system with thieeegtion pointing downwards into the
medium, see figurE_3.1WPP employs MKS (meters-kilograms-seconds) units; all dis¢an(e.g., grid
dimensions, spacing, and displacements) are in metergi(md,is in seconds (s), seismic P- and S-wave
velocities are in meters/second (m/s), densities are agkiim/cubic meter (kg/#), forces are in Newton
(N), and seismic moment (torque) is in Newton-meters (Nml).aAgles (e.g. latitude, longitude, azimuth,
strike, dip and rake) are in degrees.

Y X

Figure 3.1:WPPuses a right handed coordinate system with the z-axis pgimtbwnwards.

In WPPthe computational domain is rectangular in the horizonkzhe,
0<2<ZTmazs, 0=<Y < Ynaa

The topography surface

z=1(z,y),
defines the shape of the top surface in the vertical direcMyRP can also be run without topography, in
which caser(z,y) = 0. The computational domain is given by

0<2<ZTmaz, 0=y < Ymazs T(way) < 2z < Zmag- (31)

The grid command in the input file specifies the extent of thematational domain and the grid size
When mesh refinement is enabled, this is the grid size in tlaesest grid. The most obvious way of
specifying the grid is by providing the number of grid poimiseach direction as well as the grid size,

grid nx=301 ny=201 nz=101 h=500.0

This line gives a grid with grid size 500 meters, which exe®80 km inz, 100 km iny and 50 km in the:-
direction. Alternatively, the grid can be specified by giyitme spatial range in each of the three dimensions
and explicitly specifying the grid spacing. For example,
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grid x=30e3 y=20e3 z=10e3 h=500.0

results in a grid which spans 30,000 meters:jr20,000 meters iy, and 10,000 meters in thedirection.
The grid spacing is 500 meters, which is used to compute thebeu of grid points in each direction:
nx=61, ny=41, and nz=21, for a total of 52,521 grid points. tdNthat the number of grid points in the
different directions will be rounded to the nearest integ@ue. For example

nx = (int)1.5 + x/h, (3.2)
rounds nx to be the nearest integer valué ef x/h. The extent in the:-direction is thereafter adjusted to
x = (nx — 1)h. (3.3)

A corresponding procedure is performed in the other diogxti
The third option is to give the spatial range in each of theatdimensions and specify the number of
grid points in a particular direction:

grid x=30000 y=20000 z=10000 nx=100

In this case, the grid spacing is be computed as
h =x/(nz — 1) = 303.03.

Note that no rounding needs to take place in this case, éinga floating point number. Given this value
of h, ny and nz are computed using formulas correspondin 19 (Bvthg ny=34 and nz=67, for a total of
227,800 grid points. Again, the extents in thend z-directions are adjusted corresponding[fal(3.3). The
syntax for the grid command is given in Section 10.1.2.

3.1 Geographic coordinates

WPPsupports geographic coordinates as an alternative wayeaffging spatial locations, see Figurel3.2.
The location of the Cartesian coordinte system is specifigdé grid command, and if no location is given
the origin ¢ = 0, y = 0, z = 0) defaults to latitude 37 degrees (North), longitude -11@rdes (West), with
a 135 degree azimuthal angle from North to thaxis. The vertical coordinate is zere £ 0) at mean sea
level. The latitude ¢) and longitude ) are calculated using the approximative formulae (whetelda,
and az are in degrees)

x cos(a) — ysin(a) o

% , Q= az—lSO, (3.4)
B xsin(a) + y cos(a)
o =lon+ M cos(¢n/180) (3.5)

¢ = lat+

whereM = 111319.5 meters/degree. You can change the location and orientatithe grid by specifying
the latitude and longitude of the grid origin, and the azimaliiangle between North and theaxis. For
example:

grid h=500.0 x=30000.0 y=20000.0 z=10000.0 lat=39.0 lon=- 117.0 az=150

sets the origin of the grid to latitude 39 degrees (Northgitude -117 degrees (West), and azimuthal angle
150 degrees.



lat

Latitude North

azimuth (az)

Longitude

Figure 3.2: Geographical coordinatesWwPP.
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Chapter 4

Sources, time-functions and grid sizes

4.1 Sources and time-functions inWPP

WPPsolves the elastic wave equation in second order formulatio

puy =V -T +F(x,t), xinQ,t>0,
u(x,0) =0, wuw(x,0)=0, xin Q,
where is the densityu(x, t) is the displacement vector, afd is the stress tensor. The computational

domain(? is the box shaped regioh (B.1). By default, a free surface(raction) boundary condition is
enforced along the top boundary,

7 -n=0, z=7(z,y),t>0,

wheren is the unit normal of the = 7(z, y) surface. A super-grid damping layer surrounds the computa-
tional domain on all other sides of the computational domain

The forcing termF consists of a sum of point forces and point moment tensorcederms. For a point
forcing we have

Fy
F(x,t) = g(t, to,w)Fo | F, | d(x—xo),
F,
wherexy = (xq, Y0, 20) IS the location of the point force in space, ajd, ¢y, w) is the time function, with
offset timet, and frequency parameter. The (£, Fy, F,)T vector holds the Cartesian components of the
force vector, which is scaled by the force amplitugge
For a moment tensor source we have
M:v:v Mry Mmz
F(x,t) = g(t,to,w) Mo M -Vi(x —x9), M= | M,, M, M,
sz Myz Mzz
In this case the seismic moment of the moment tensbfjisotherwise the notation is the same as for a point
force. Note that the moment tensor always is symmetric. Arenient way of specifying moment sources

is by using the dip, strike and rake angles (see Seffion4 bl syntax) defined in Aki and Richards [1].
In this case, the total seismic momenti/, [Nm] is related to the moment magnitude by the formula

My = ; [1og10 (Z M0> - 9.1} .
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After parsing all source commands in an input filéPPoutputs the moment magnitude using this formula.

For moment tensor sources, the functigft) is called the moment history time function, while its
time derivativeg’(t) is known as the moment rate time functio/PPcalculates the displacements of the
motion corresponding to the moment history time functign). However, since the material properties
are independent of time, the equations solved\BP also govern the velocities when the time function is
replaced byy/(¢), i.e., the corresponding moment rate time function. Fonga, if the solution calculated
with the Gaussianint  time function represents the displacements of the mottmnsolution calculated
with the Gaussian time function corresponds to the velocities of the same amotiHence, if you are
primarily interested in calculating velocities, you camluee the amount of post processing by using the
corresponding moment rate time function in the source t&ym(

Note that most first order formulation codes (sucHe&B) are based on the velocity-stress formulation
of the elastic wave equation. These codes use the momenimetdunction (i.e., theGaussian time
function in the above example) and solve for the velocitiethe motion.

In WPPthe forcing is specified in the input file using teeurce command. There needs to be at least
one source command in the input file in order for anything topee during the simulation. Complicated
source mechanisms can be described by having many sourgeamms in the input file. An example with
one source command is:

source x=5000 y=4000 z=600 mO0=1el5 mxx=1 myy=1 mzz=1 \
type=Rickerint t0=1 freq=5

which specifies an isotropic source (explosion) at the pajnt= (5000, 4000, 600) with amplitude10'®
Nm, using the Rickerint time function with offset tintg = 1 s and frequency parameter= 5 Hz. This
command sets the off-diagonal moment tensor eleméts (1,. andM,.) to zero (which is the default
value).

Note that it is not necessary to place the sources exactlyidmpgints. The discretization of the source
terms is second order accurate for any location within thematational domain.

4.2 Predefined time functions

The source time function can be selected from a set of prestefimctions described below. All functions
start from zerolim;_, _, g(¢,to,w) = 0) and tend to a contant terminal valden; ... g(¢,to,w) = goo-

In seismic applications;,, # 0 always corresponds to solving for the displacements of thiéam, because
the solution will tend to a non-zero steady state solutianldme times. This solution corresponds to the
final displacements due to a seismic event. Whgn= 0, the solution will always tend to zero for large
times, as is expected from the velocities or acceleratidtissomotion due to a seismic event.

The Gaussian and the Triangle functions integrate to gﬁﬁ%}o G(t,to,w)dt = 1), while the Sawtooth,
Smoothwave, and Ricker functions integrate to zero and n@ae@imum amplitude one. The Rickerint
function is the time-integral of the Ricker function andegtates to zero. The Gaussianint, Brune, BruneS-
moothed, and Liu functions tend to oréw;—.. g(t, to,w) = 1).

The Triangle, Sawtooth, Ramp, Smoothwave, Brune, Brune@med, Liu and VerySmoothBump func-
tions are identically zero far < ¢y, so they will give reasonable simulation resultgyf> 0. However, the
Gaussian, Gaussianint, Ricker, and Rickerint functiomscantered arountl= ¢y with exponentially de-
caying tails fort < ¢y. Hencet, must be positive and of the ordéXx(1/w) to avoid incompatibilty problems
with the initial conditions. We recommend choosifagsuch thaty(0, ¢y, w) < 10~ for these functions.

42.1 Gaussian

g(t, to,w) = \/%e—uﬂ(t—toﬁ/;

12



Gaussian ©=3.1416 t0=0 Gaussianint ®=3.1416 t0=0

1.5

Figure 4.1: Gaussian (left) and Gaussianint (right) wite- = and¢y = 0.

Note that the spread of the Gaussian function (often denoésirelated tov by o = 1/w. A plot of the
Gaussian time-function is shown in Figlrel4.1.

4.2.2 Gaussianint

The Gaussianint function is often used in earthquake muoglsince it leads to a permanent displacement.

t
g(t, to,w) = \/% / e~ (r=10)*/2 g

Gaussianint is the time-integral of the Gaussian. A plothef Gaussianint time-function is shown in Fig-
ure[4].

4.2.3 Ricker
glt,to,w) = (2r2wA(t — tg)? — 1) ™™ W (=10,

A plot of the Ricker time-function is shown in Figureh.2.

4.2.4 Rickerint
g(t> to, W) = (t — to)e_”2w2(t—t0)2 .

RickerInt is the time integral of the Ricker function, angbisportional to the time-derivative of the Gaussian
function. The RickerlInt function is sometimes used in sé&smploration simulations. Since the Rickerint
function tends to zero for large times, it does not lead to pegmanent displacements. A plot of the
RickerInt time-function is shown in Figufe_%.2.
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aq

0.5

-3

4.2.5 Brune

Ricker o=1 t0=0 RickerInt w=1 t0=0

0.2

-2 0 1 2 3 _0'-23 -2 0 1 2 3

Figure 4.2: Ricker (left) and RickerInt (right) with = 1 and¢g = 0.

The Brune function has one continuous derivative but iteseéderivative is discontinuous at ¢,

0, t < to,
g(t,to,w) = it
1 — e @) (1 4 w(t —tg)), t>to.

The Brune function is often used in earthquake modeling.

4.2.6 BruneSmoothed

The BruneSmoothed function has three continuous derasit = ¢, but is otherwise close to the Brune

function;

g(t,t(],W) =

0, t < to,
1 — e @t=t) |1 4 w(t —ty) + %(w(t —19))?
— Qi(w(t —t0))3 + iz(w(t —to))t — ig(w(t —t0))°|, 0<w(t—ty) < o,
o 2x§ 2xy
[ 1— e wl=0)(1 4 w(t —to)), w(t —to) > xo.

The parameter is fixed tog = 2.31. Plots of the Brune and BruneSmoothed time-functions aosvsh
in Figure[43. Since the BruneSmoothed function has thre¢iramous derivatives, it generates less high
frequency noise. Compared to the Brune function, the Brom&#hed function gives better accuracy at a
given grid resolution

14



Brune w=2 t0=—1 BruneSmoothed w=2 t0=—1

Figure 4.3: Brune (left) and BruneSmoothed (right) witk= 2 andtg = —1.

4.2.7 Liu
This function was given in a paper by Liu et all [7]. It is defihby
0, t < t07
[ 1.2 1.2 t—t
C |0.7(t — tg) + —71 — —T1 cos u)
T T 27 i
0.7 . 7T(7f —to)
——Tsin | —= ||, tog <t <71+,
us T
[ 1.2 0.7 t—to)
Cl|t—ty—03m +—11 — —mysin mlt = to)
10 03 . 7T(t—t0—’7’1)
+ —msin| ——— ||, T +tg<t<2m + o,
s T2 ]
1.2
C 03(t — to) + 1.1+ —mn
s
0.3 t—tg— |
—|——7'gsin<—7r( 0 Tl)) » 2T+t <t < T+,
T T2 ]
{ 1, t> 71+ 1.

The parameters are given by= 27 /w, 71 = 0.137, 70 = 7—71, andC = 7 /(1.41y7+1.2714+0.3m57). The
Liu function resembles the Brune function, but the rise imewhat steeper for smaill- ¢, see Figur€&Zl4.
4.2.8 Triangle

Fortg <t <typ+1/w,

sin(3mw(t — tp)) N sin(brw(t —to)  sin(Trw(t — o))
9 25 49 ’

16
g(t,to,w) = —5 |sin(rw(t — to)) —
Y
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Liu @=2 t0=0

Figure 4.4: Liu time function withv = 2 andty = 0.

with g(¢, g, w) = 0 elsewhere. A plot of the Triangle time-function is shown igufe[45.

4.2.9 Sawtooth
Fortg <t <typ+1/w,

sin(6rw(t —to)) | sin(107w(t —to))  sin(ldrw(t — to))
9 25 49 ’

with ¢(¢, tp,w) = 0 elsewhere. A plot of the Sawtooth time-function is shown iguire[Z5.

8
g(t,to,w) = — [sin(2rw(t — o)) —
T

4.2.10 Ramp
0, t < t07
g(t,to,w) = ¢ 0.5(1 — cos(m(t — to)w)), to <t <to+1/w,
1, t>t)+1/w.

A plot of the Ramp time-function is shown in Figurel.6.

4211 Smoothwave

Fortg <t <top+1/w,

gt 10,0) = 2 (wlt — 10))® — O wlt — o)) + e (wt — to))’
- 22— 1)+ E e — ),

with g(¢, tg,w) = 0 elsewhere. A plot of the Smoothwave time-function is showRigure[4.®.
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Triangle m=1 t0=0 Sawtooth w=1 t0=0

2 1
1.8/ 1 0.8
1.6/ 1 0.6}
1.4¢ 1 04
1.2+ 102
1 1 o0
0.8 1 -0.2F
0.6 1 -0.4
0.4 1 -0.6}
0.2 1 -0.8}
Y (t) 1 2 3 T3 2 (? 1 2

Figure 4.5: Triangle (left) and Sawtooth (right) with= 1 and¢y = 0.

Ramp w=1 t0=0 Smoothwave w=1 t0=0
1r 1r
0.8r
0.8r 0.6r
0.4r
0.6r 0.2r
= 0
0.4r -0.2r
-0.4r
0.2r -0.6
-0.8r
0 -1
3 =2 4 0 1 2 3 3 -2 - -

Figure 4.6: Ramp (left) and Smoothwave (right) with= 1 andty = 0.
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VerySmoothBump 0=0.5 t,=0

0.8

0.2f

Figure 4.7: VerySmoothBump withh = 0.5 and¢y = 0.

4.2.12 VerySmoothBump

0, t < to,
—1024(w(t — t))'0 + 5120(w(t — tg))? — 10240(w(t — to))®

+ 10240(w(t — t9))" — 5120(w(t — t))® + 1024(w(t — 1)), to <t <to+ 1/w,
0, t>t)+1/w.

g(t, to,w) =

A plot of the VerySmoothBump time-function is shown in Figl#ET.

4.3 How fine does the grid need to be?

The most difficult parameter to choose when preparing thetifife is probably the grid sizé. It is
extremely important to use a grid size which is sufficientigadl, because you must resolve the waves
which are generated by the source. On the other hand you damit to use an unnecessarily small grid
size, because both the computational demand and the mesmriraments increase with decreasing grid
size.

The number of grid points per shortest wavelendthjs a normalized measure of how well a solution
is resolved on the computational grid. Since the shear whases the lowest velocities and a shorter wave
length than the compressional waves, the shortest wavthléng,, can be estimated by

min V;
Lmin = )

fma:v

where V; is the shear velocity of the material arfg,... is the largest significant frequency in the time

18



c ——d/dt Brune, freq = 1.5
3 — Gaussian, freq = 1.5
9 — RickerlInt freq = 0.25
§ 1.5¢ — Ricker freq = 0.25
n
©
S ]
§ 1
(2]
C
o
}_
o 0.5} 1
S
o
L
0 L L
0 0.5 1 1.5 2

Frequency [1/s]

Figure 4.8: Magnitude of the Fourier transform of the defixe of the Brune (dark blue), the Gaussian
(green), the Rickerint (red), and the Ricker (light bluepe+functions. Herdreq =1.5 for the Gaussian
and the derivative of the Brune function, afndq =0.25 for Ricker and Rickerlnt.

function g(t). Hence the number of grid points per wave length eqéals,/h, which is given by

min Vj
hfma:c )

Note thath needs to be made smaller to maintain the same valu@ ibfeither V; is decreased or if the
frequency is increased. In formula#.)jn V; is found from the material properties ahds determined
by the input grid specification. The frequencies presenhédolution are determined by the frequencies
present in the time function(s) in the source term(s).

Figure[4.8 displays the absolute values of the Fourier toams of the functions Gaussian, RickerlInt,
Ricker, and the time derivative of the Brune function. Indmn of the mathematical definitions of the
Gaussian and Brune functions shows thatfilee; parameter specifies the angular frequency for these
functions. The relation between the fundamental frequegy@and thefreq parameter is given by

P =

(4.1)

freq, for Ricker, RickerInt, and VerySmoothBump
Jo= (4.2)

freq/(2n), for Liu, Brune, BruneSmoothed, Gaussian, and Gaussianint

The plots in Figurd—4]18 were made with frequency paramfry =0.25 for the Ricker and Rickerint
functions and frequency paramefeeq =1.5 for the Gaussian and)/dt(Brune) functions. Hencefy ~
0.25 for all functions in Figurd—4]8. Note that the Fourier traorsh of the Brune function decays much
slower than the other functions for high frequencies. Téidue to its lack of smoothnesstat tg.

It is the upper power (highest significant) frequency in tingetfunction that shall be used ib(4.1) to
estimate the number of grid points per wave length. For malgburposes ... is defined as the frequency
above which the amplitude of the Fourier transform fallolbeb % of its max value. We have

) 25fo, Ricker, RickerInt, Gaussian time functians

~ 4.3
e {4f0, Brune time function 43)
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Figure 4.9: Relative errors for different source functidis (left) and 50km (right) from the source. For
the Brune time function the error decays much slower thariferother time functions. Here, the number
of points per wavelengthi{) was based on the fundametal frequerigynstead off,,..., S0 the values oP
should be divided by 2.5 for Gaussianint, Gaussian, Rickeaind Ricker. For Brune? should be divided
by 4.

In other words, simulations using the Brune function arelbato resolve on the grid and need much more
grid points to give reliable results.
Our experience is thAWPPgives accurate results for

P > 15,

but the exact number depends on the distance between theesana the reciever. Note that the relation
between the fundamental frequentyand the upper power frequengy,... in (@3) is very important. For
other time functions,f,,., can be estimated using the matlab/octave scripts fcnpltfhenplot in the
tools directory. A lower number foiP? can be used in many practical situations, for example whereth
are significant uncertainties in the material properties.

4.3.1 Lamb’s problem

We now compute solutions to Lamb’s problem in a material With= /3 km/s, Vi = 1 km/s and
the densityl000kg/m?3. The solution is forced downward with amplitufie=5e13 N and with a time
function centered at tim®=25 s . For various time functions the solution is recorded atirars 10 and
50 km from the source. At the recievers the relative error

Hue:vact (t) - ucomputed(t) H 00
[tezact (t)|loo

)

in the horizontal component is computed and plotted in EgARA. In these calculations, the grid size
was held constant and the frequency paramfesey was varied. Note that the reported number of points
per wavelength was based on the fundamental frequé¢naystead off,,,..., SO the values of should be
reduced according t6(4.3)

From Figurd’ZB we see that for all of the time functions, @xd¢ke Brune function, there is a decrease
in error inversely proportional to the square of the numtepaints per wavelength. The errors are larger
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for the Brune function since its spectrum decays much slaluerto its discontinuous second derivative at
t = to. The difference in the error levels between the left and itjet sub-figures are due to the fact that
errors in the numerical solution accumulate as the solyti@mpagates away from the source. For a single
harmonic wave, and a second order accurate finite differaratbod, the number of points per wavelength
required to achieve a certain error is proportional to theasg root of the number of wavelengths the wave
propagates (see Chapter 3li [5] for a detailed discussibim)s, to get the same accuracy at five times the
distance from the source, we need to use ahduit: 2.24 times more points per wave length. This could
be achived by reducing the grid size by a factor 2.24 in eaddctidn, resulting in a factor of 11.1 times
more grid points and an increase in CPU time by a factor 25.
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Chapter 5

The material model

The material model iWPPis defined by the values of the density,the compressional velocity;,, and
the shear velocityVs, at each grid point. These values can be specified by the blmtknand §[E.1), the
efile command{[E.2), the pfile command; &.3), the ifile command§G.4), or by a combination of them.

Note thatWPPuses a single layer of ghost points outside the computdtaoraain (as defined by the
grid command). The material properties must therefore fieek for the computational domain padded by
one layer of ghost points. Note, however, that the mater@ehdoes not need to be defined above the free
surface. Material properties at those points are insteaidji@asd by extrapolation from the interior of the
domain.

It is important to note that the order within the material coands (block, pfile, efile, and ifilegjoes
matter (unlike all other commands) in that the priority o titmaterial command increase towards the end
of the input file. Hence, a material command in the input file ba completely or partially overridden by
subsequent material commands.

In the block, pfile, and ifle commands, material properties a@ssigned based on the depth below the
free surface. This means that the internal material modpends on the topography, but the material
properties along the free surface will always be the santegandently of the topography model. For the
efile command, material properties are defined as functibetewation relative to mean sea level £ 0).
Here the topography information is embedded in the matdestription. If you combine the efile command
with a planar topography, a linear mapping is constructédrbehe material properties are assigned to the
top (finest) Cartesian grid. The properties at the free saréae thus mapped to the top grid surface=(0),
and the bottom grid surface with = zy is assigned material properties for elevatien. Elevation
values at intermediate grid points follow from the linearpping. Subsequent (coarser) Cartesian grids are
not effected by this mapping procedure.

5.1 The block command

The block command can be used to specify material propertiestangular volumes of the computational
domain, either with constant values or linear vertical ggats. By combining the block command with the
sub-region options we can define a material model compostdea# layers:

block vp=4000 vs=2500 rho=2000
block vp=6000 vs=3500 rho=2700 z1=15000
block vp=8000 vs=4500 rho=3300 z1=35000 z2=100000

In this case the top layer has a thickness of 15 km, the midgilr 20 km and the lower layer 65 km. Because
these block commands do not specify horizontal coordin#tessalues extend to the grid boundaries in both
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horizontal directions. To add a box shaped inclusion of a maierial we could add the following line

block vp=3000 vs=2000 rho=1000 \
x1=4000 x2=8000 y1=3000 y2=7000 z1=10000 z2=70000

4 Image slice ofV at x=50000m 4 Image slice ofV at x=50000m

il B2

y [m] y [m]

om

n

z[m]
N
z [m]

o

(o]

10

Figure 5.1: Examples of material models specified with tlelkblcommand.

To the left in Figurd5l]1 an image slice Bf throughz = 50,000 is displayed.
The following example combines several block commands tesgenerate the material model displayed
to the right in Figuré5]1:

block vp=8000 vs=4500 rho=3300 vpgrad=-0.01
block vp=3000 vs=2000 rho=1000 \

x1l=1le4 x2=9e4 yl=led y2=9e4 z1=1ed z2=9e4 vpgrad=0.02
block vp=4000 vs=2500 rho=2000 \

x1=15e3 x2=85e3 yl1=15e3 y2=85e3 z1=15e3 z2=85e3
block vp=6000 vs=3500 rho=2700 \

x1=15e3 x2=85e3 yl=15e3 y2=85e3 z1=45e3 z2=55e3
block vp=6000 vs=3500 rho=2700 \

x1=15e3 x2=85e3 z1=15e3 z2=85e3 yl1=38e3 y2=45e3

5.2 The efile command

The efile command is used to read in material properties froreteee database file. Etree databases use
an oct-tree data structure which allows material propgrn@ébe represented with finer spatial resolution
near the surface. Topography and bathymetry informatioimgkided in the database. The same etree
database file can be used independently of the grid sizegse i no need to have a one-to-one mapping
between the etree model and the computational grid. Unfataly, it takes a major effort to develop an
etree database file, and we currently only have access taiatalata for Northern California and the
extended San Francisco bay area. This model was developdtebySGS and can be accessed from
http://www.sfO6simulation.org/geology/velocitymodel . Be aware that the database is
rather large and can take a very long time to download. Thgrggbical extent of the etree model is given
in Table[521, which also is shown on a map in Fiduré 5.2.

In the etree database, material properties are stored atidng of geographic coordinates (latitude,
longitude, elevation)WPPuses formulad(3]4J-(3.5) to determine that informatiarefach grid point before
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Figure 5.2: The geographical extent of the etree models @thérn California and the San Francisco bay
area.

Detailed Model Regional Model
Corner| Longitude | Latitude Corner| Longitude Latitude
SE -120.64040| 37.04718 SE -118.944514| 36.702176

SW -121.91833| 36.31746 SW -121.930857| 35.009018
NW -123.85736| 38.42426 NW -126.353173| 39.680558
NE -122.56127| 39.17461 NE -123.273199| 41.48486

Table 5.1. Geographic extent (NAD27 projection) for thetcanCalifornia velocity models. Both models
are defined down to 45 km depth. See http://www.sfO6simanatirg/geology/velocitymodel for details.
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it obtains the material properties from the data base. tiatgr to WPP, the cencalvmsoftware library is
used to query the etree database. Hence, before the efilearmdnran be used, the corresponding software
libraries must be installed aniPPmust be configured to use them, see Sedfbn A.

It is important to note the bounds of the geographical regiothe database. Assuming the computa-
tional domain is contained within the bounds of the databihs$e easy to set up the material model in the
input file:

grid x=100e3 y=100e3 z=40e3 lat=38.0 lon=-121.8 az=144 h=1 000
efile etree=/p/Iscratchd/andersp/USGSBayAreaVM-08.3. 0.etree

To verify that the computational domain is inside the etratachase, we recommend checking the geo-
graphic coordinates on map before the simulation is staMéloften use the google earth program for this

purpose. In the case when the computational domain is léngerthe region covered by the efile, a block

command can be used to assign material properties to gnidspoiitside of the efile region:

grid x=300000 y=300000 z=60000 lat=38 lon=-121.5 az=135 nx =100
block vp=8000 vs=4000 rho=1000 rhograd=0.5
efile etree=/p/Iscratchd/andersp/USGSBayAreaVM-08.3. 0.etree

However, sharp jumps in material properties can lead toifsegnt artificial scattering of seismic waves. In
some cases, better results can be obtained by reducingzthefsine computational domain to match the
extent of the etree region.

To enable use of the extended SF model, the extended etramiBkalso be downloaded and then added
to the efile command line (names have been shortened for bedigability):

efile etree=USGSBayAreaVM.etree xetree=USGSBayAreaVME xt.etree

5.3 The pfile command

The pfile command can be used to assign material propertsedlan depth profiles on a lattice. A pfile
contains the values of the model features (P-velocity, I8eity, density, and Q-factors) as function of
depth at points on an equally spaced latitude-longitudicéat The number of grid points in the depth
direction needs to be the same for all profiles, but the grats does not need to be uniform and can
also be different for each profile. Material discontinistiean be represented by two material values for the
same depth value. Furthermore, layers which only occur inbset of the profiles can be tapered to zero
thickness in the remaining profiles. This is handled by kiticng multiple data points with the same depth
and material values in a profile.

The lattice of the pfile does not need to have any relationga@tmputational mesh used\WwiPPand is
often much coarser. The material properties in the comjoumalt mesh are assigned values using Gaussian
averaging between the nearest x N profiles in the latitude-longitude plane and linear intdation
in the depth direction. Let the grid point have longitugidatitude ¢ and depthd. Material properties are
first linearly interpolated in the depth direction along le@cofile and then averaged in the latitude-longitude
plane. The number of points in the Gaussian averagiig,is assigned by the userintpéle command.
For example, the following line in the input file maké&PPread a pfile namethaterial.ppmod

pfile filename=material.ppmod vsmin=1000 vpmin=1732 smo othingsize=4

The optionalvsmin andvpmin keywords are used to assign minimum threshold values fothand
S-velocities, respectivelysmoothingsize=4  means thatV; = 4 in the Gaussian averaging. A larger
value of N (> 5) is particularily useful to avoid staircasing imprints whihe computational grid is much
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Figure 5.3: Thesmoothingsize  parameter can be used to average out abrupt variations hotiEontal
plane (constant depth) in a coarse pfile material model.

26



finer than the pfile lattice, see Figurelssdnoothingsize  can be set to any number greater than or equal
to one.

WhenNg is odd, the Gaussian averaging starts by finding the closesbgint on the latitude-longitude
lattice, (¢;, 0;). The material property (p, V), Vs, etc.) is assigned by the formula

i+Q i+Q
(¢,60) = Lm=i-Q@ Ln=;-@ Cmn¥mn - Ne—1 (5.1)
& ¢> - ZH_Q E]+Q w 9 - 2 ) .
m:i—Q n:J_Q m,n
where the weights are given by
Wi = e (@m=0)"+On=0)2/0> NeAjat

2v/—log 10-6’
and the grid size in the latitude-longitude latticeis,;. This choice ofx makes the weights,, , < 10~°
for points that are further frort,,, 6,,) than Ng A4 /2, which justifies the truncation of the seriesin{5.1).
A similar procedure is used for even values/f;, but in this case the averaging formula{5.1) is centered
around the nearest cell center on the latitude-longitutteda
Data files for the pfile command are in ASCII text format, seeti®al[TT.2.

5.4 The ifile command

The ifile command reads a file holding the depth to material interfactaces. The material properties
between each pair of material surfaces must be defined byntterial command. The depth must be
non-negative. Zero depth corresponds to the topographtedhsurfaces are specified on a regular lattice
in gegraphic coordinates. The unit for depth is meters, evlatitude and longitude are in degrees. The
ifile command may be combined with other material specificatiokitas not necessary that the lattice in
geographic coordinates covers the horizontal extent oftimeputational domain.

Let N,.: > 1 material surfaces be known at longitudes

(bia Z‘:1727"'7*~7\[lon7

and latitudes
ejv j:172>"'7Nlat7

Note that the latitudes and the longitudes must either mlgtincreasing or strictly decreasing, but the step
size may vary. Also note that the lattice points are indepahdf those in théopography command.
The material surfaces should be given on the regular lattice

dq:,; = depth to surface numbaerat longitudeg;, latituded;.

The material surfaces correspond to material propertigbarfollowing way. At longitudep;, latituded;
material number 1 (as defined by theaterial command) occupies depths< d < d; ; ;. Material number
2 occupies depthg; ; ; < d < da; j, and so on. Ifd; ; ; = 0, material number 1 is not used. Similarily,
material numbek > 1is not used ifd;_, ; ; = dy. ; ;. Material properties are only defined for depths down
to the last surface, i.e.,

0<d< deat,i,j-

If the computational domain extends below the last matetidice, it is necessary to use other commands
to define the material properties in those regions.

Bi-linear interpolation in longitude and latitude is useddefine the material surfaces in between the
data points.

An example that uses an ifile material description is diseti$s Sectiof 913.
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Chapter 6

Topography

The topography command WPPis used to specify the shape of the top surface of the conipogt
domain,
z=1(z,Yy).

A curvilinear grid is automatically constructed betweeis $urface and a user specified deptezmax. If
no topography command is present in the input file, the tofasearis taken to be the plane= 0, and no
curvilinear grid is constructed.

Three different topography descriptions are currently leanpented inWPP. a Gaussian hill{E1), a
latitude-longitude grid file§[&.2), or topography from an Etree data ba$E.q).

6.1 Gaussian hill topography

The simplest type of topography is a Gaussian hill, whichvedl the user to place one Gaussian hill at a
specified location in théz, y)-plane. The user can adjust the amplitude of the hill as veeitsaspread in
the x andy-directions. This form of the topography command looks tikis:

topography input=gaussian zmax=7.5 gaussianAmp=2.4 \
gaussianXc=3.6 gaussianYc=2.4 \
gaussianLx=0.25 gaussianLy=0.3

Note thezmax option, which tellsWPPto extend the curvilinear grid to = 7.5. The most common use of
the Gaussian hill topography is for testing, see for exarth@anput scripts irexamples/twilight

gauss-twi-1.in  gauss-twi-2.in  gauss-twi-3.in

6.2 Topography grid file

The topography can be given on a regular lattice in geogcaftii-lon) coordinates. This approach works
well together with théblock , pfile , andifile ~ material commands. When the material is described by
anefile command, it is better to setup the topography from the saree eatabase, see Section 6.3.

To setup the topography for the Grenoble basin test caseilbiedén Sectiof 313, you give the command

topography input=grid file=grenobleCoarse.topo zmax=30 00 order=2

The file grenobleCoarse.topo holds the elevation (in meters) relative to mean sea levelranst
conform to the simple ASCII text format described in Secfidn3. In the above case, a curvilinear grid
is constructed between the topography surfacezard3000, and theorder=2 option specifies a second
order polynomial stretching in the curvilinear mappingdtian. The topography is shown in Figurel6.1.
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Figure 6.1: Topography in the vicinity of Grenoble, France.

6.3 Etree topography

The Etree data bases for the San Francisco bay area and io@hkfornia contain topographic informa-
tion. You can setup the computational grid to follow thisdgpaphy by using the commands

topography input=efile zmax=6e3 order=2
efile query=MAXRES \
etree=/Users/peterssonl/src/wpp/tests/lUSGSBayAreaVM -08.3.0.etree

Here, the topography command teléPPto read the topography from the Etree specified byetfie
command. Hence, the topography command must be accompaniad efile command. Therder=2
option specifies the type of stretching to use when makingtimeilinear grid. A higher value makes the
curvilinear grid smoother near the bottom, but can causegedavariation in grid size near the top. The
zmax=6e3 option tellsWPPto extend the curvilinear grid down to = 6000. As a rule of thumb, if the
topography surface = 7(z,y) varies betweerr,,;,, < z < T4 (2 IS positive downwards), you should
use

zmax 2 Tmaz + 2(Tmax - Tmin)a

After reading the topographyVPP prints out the min and max-coordinates. In the topography shown in

Figure[G6.2,
Toin = —1144.3,  Tjae = 1092.9,

which givest,az + 2(Tmaze — Tmin) = 5567.3 Before the curvilinear grid is generated, the topography
surface is smoothed by a Jacobi iteration. The purpose ddrtieothing is t